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Abstract

The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework 

to perform multivariate regression modeling with a large number of responses and a multivariate 

covariate of interest. We propose two novel heritability ratios to simultaneously perform 

dimension reduction, response selection, estimation, and testing, while explicitly accounting for 

correlations among multivariate responses. Our SPReM is devised to specifically address the low 

statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test 

statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation 

problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast 

optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank 

projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have 

systematically investigated the convergence properties of SURP and the convergence rate of 

SURP estimates. Our simulation results and real data analysis have shown that SPReM out-

performs other state-of-the-art methods.
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1 Introduction

Multivariate regression modeling with a multivariate response y ∈ ℝq and a multivariate 

covariate x ∈ ℝp is a standard statistical tool in modern high-dimensional inference, with 

wide applications in various large-scale applications, such as genome-wide association 

studies (GWAS) and neuroimaging studies. For instance, in GWAS, our primary problem of 

interest is to identify genetic variants (x) that cause phenotypic variation (y). Specifically, in 

imaging genetics, multivariate imaging measures (y), such as volumes of regions of interest 

(ROIs), are phenotypic variables, whereas covariates (x) include single nucleotide 

polymorphisms (SNPs), age, and gender, among others. The joint analysis of imaging and 

genetic data may ultimately lead to discoveries of genes for neuropsychiatric and 

neurological disorders such as autism and schizophrenia (Scharinger et al., 2010; Paus, 

2010; Peper et al., 2007; Chiang et al., 2011a,b). Moreover, in many neuroimaging studies, 

there is a great interest in the use of imaging measures (x), such as functional imaging data 

and cortical and subcortical structures, to predict multiple clinical and/or behavioral 

variables (y) (Knickmeyer et al., 2008; Lenroot and Giedd, 2006). This motivates us to 

systematically investigate a multivariate linear model with a multivariate response y and a 

multivariate covariate x.

Throughout this paper, we consider n independent observations (yi, xi) and a Multivariate 

Linear Model (MLM) given by

(1)

where Y = (y1, …, yn)T, X = (x1, …, xn)T, and B = (βjl) is a p × q coefficient matrix with 

rank(B) = r* ≤ min(p, q). Moreover, the error term E = (e1, …, en)T has E(ei) = 0 and 

Cov(ei) = ΣR for all i, where ΣR is a q × q matrix. Many hypothesis testing problems of 

interest, such as comparison across groups, can often be formulated as

(2)

where C is an r × p matrix and B0 is an r × q matrix. Without loss of generality, we center 

the covariates, standardize the responses, and assume rank(C) = r.

We focus on a specific setting that q is relatively large, but p is relatively small. Such a 

setting is general enough to cover two-sample (or multi-sample) hypothesis testing for high-

dimensional data (Chen and Qin, 2010; Lopes et al., 2011). There are at least three major 

challenges including (i) a large number of regression parameters, (ii) a large covariance 

matrix, and (iii) correlations among multivariate responses. When the number of responses 

and the number of covariates are even moderately high, fitting the conventional MLM 

usually requires estimating a p × q matrix of regression coefficients, whose number pq can 
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be much larger than n. Although accounting for complicated correlations among multiple 

responses is important for improving the overall prediction accuracy of multivariate analysis 

(Breiman and Friedman, 1997; Cook et al., 2010), it requires estimating q(q+1)/2 unknown 

parameters in an unstructured covariance matrix.

There is a great interest in the development of efficient methods for handling MLMs with 

large q. Four popular traditional methods include the mass univariate analysis, the 

Hotelling’s T2 test, partial least squares regression, and dimension reduction methods. As 

pointed by Klei et al. (2008) and many others, testing each response variable individually in 

the mass univariate analysis requires a substantial penalty of controlling for multiplicity. The 

Hotelling’s T2 test is not well-defined, when q > n. Even when q ≤ n, the power of the 

Hotelling’s T2 can be very low if q is nearly as large as n. Partial least squares regression 

(PLSR) aims to find a linear regression model by projecting y and x to a smaller latent space 

(Chun and Keles, 2010; Krishnan et al., 2011), but it focuses on prediction and 

classification. Although dimension reduction techniques, such as principal component 

analysis (PCA), are considered to reduce the dimensions of both the response and covariates 

(Formisano et al., 2008; Kherif et al., 2002; Rowe and Hoffmann, 2006; Teipel et al., 2007), 

most of the methods ignore the variation of covariates and their associations with responses. 

Thus, such methods can be sub-optimal for our problem.

Some recent developments primarily include regularization methods and envelope models 

(Peng et al., 2010; Tibshirani, 1996; Breiman and Friedman, 1997; Cook et al., 2010, 2013; 

Lin et al., 2012). Cook, Li and Chiaromonte (2010) developed a powerful envelope 

modeling framework for MLMs. Such envelope methods use dimension reduction 

techniques to remove the immaterial information, while achieving efficient estimation of the 

regression coefficients by accounting for correlations among the response variables. 

However, the existing envelope methods are limited to the n > max(p, q) scenario. Recently, 

much attention has been given to regularization methods for enforcing sparsity in B (Peng et 

al., 2010; Tibshirani, 1996). These regularization methods, however, do not provide a 

standard inference tool (e.g., standard deviation) on the regression coefficient matrix B. Lin 

et al. (2012) developed a projection regression model (PRM) and its associated estimation 

procedure to assess the relationship between a multivariate phenotype and a set of covariates 

without providing any theoretical justification.

This paper presents a new general framework, called sparse projection regression model 

(SPReM), for simultaneously performing dimension reduction, response selection, 

estimation, and testing in a general high dimensional MLM setting. We introduce two novel 

heritability ratios, which extend the idea of principal components of heritability from 

familial studies (Klei et al., 2008; Ott and Rabinowitz, 1999), for MLM and overcome over-

fitting and noise accumulation in high dimensional data by enforcing the sparsity constraint. 

We develop a fast algorithm for both sparse unit rank projection (SURP) and sparse multi-

rank projection (SMURP). Furthermore, a test procedure based on the wild-bootstrap 

method is proposed, which leads to a single p–value for the test of an association between all 

response variables and covariates of interest, such as genetic markers. Simulations show that 

our method can control the overall Type I error well, while achieving high statistical power.
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Section 2 of this paper introduces the SPReM framework. We introduce a novel deflation 

procedure to extract the most informative directions for testing hypotheses of interest. 

Simulation studies and an imaging genetic example are used to examine the finite sample 

performance of SPReM in Section 3. We present concluding remarks in Section 4.

2 Sparse Projection Regression Model

2.1 Model Setup and Heritability Ratios

We introduce SPReM as follows. The key idea of our SPReM is to appropriately project yi 

in a high-dimensional space onto a low-dimensional space, while accounting for the 

correlation structure ΣR among the response variables and the hypothesis test in (2). Let W = 

[w1, …, wk] be a q × k nonrandom and unknown direction matrix, where wj are q × 1 

vectors. A projection regression model (PRM) is given by

(3)

where βw is a p × k regression coefficient matrix and the random vector εi has E(εi) = 0 and 

Cov(εi) = WTΣRW. When k = 1, PRM reduces to the pseduo-trait model considered in 

(Amos et al., 1990; Amos and Laing, 1993; Klei et al., 2008; Ott and Rabinowitz, 1999). If k 

<< min(n, q) and W were known, then one could use likelihood (or estimating equation) 

based methods to efficiently estimate βw, and (2) would reduce approximately to

(4)

where Cβw = CBW and b0 = B0W. In this case, the number of null hypotheses in (4) is 

much smaller than that of (2). It is also expected that different W’s strongly influence the 

statistical power of testing the hypotheses in (2).

A fundamental question arises “how do we determine an ‘optimal’ W to achieve good 

statistical power of testing (2)?” To determine W, we develop a novel deflation approach to 

sequentially determine each column of W at a time starting from w1 to wk. We focus on how 

to determine w1 below and then discuss how to extend it to the scenario with k > 1.

To determine an optimal w1, we consider two principles. The first principle is to maximize 

the mean value of the square of the signal-to-noise ratio, called the heritability ratio, for 

model (3). For each i, the signal-to-noise ratio in model (3) is defined as the ratio of mean to 

standard deviation of a signal or measurement wT yi, denoted by SNRi = wTBT 

xi/(wTΣRw)0.5. Thus, the heritability ratio (HR) is given by

(5)

where . The HR has several important interpretations. If the xi are 

independently and identically distributed (i.i.d) with E(xi) = 0 and Cov(xi) = ΣX, then as n → 

∞, we have
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where →p denotes convergence in probability. Thus, HR(w) is close to the ratio of the 

variance of signal wTBT xi to that of noise εi. Moreover, HR(w) is close to the heritability 

ratio considered in (Amos et al., 1990; Amos and Laing, 1993; Klei et al., 2008; Ott and 

Rabinowitz, 1999) for familial studies, but we define HR from a totally different 

perspective. With such new perspective, one can easily define HR for more general designs, 

such as cross-sectional or longitudinal design. One might directly maximize HR(w) to 

calculate an ‘optimal’ w1, but such a w1 can be sub-optimal for testing the hypotheses in (2) 

as discussed below.

The second principle is to explicitly account for the hypotheses in (2) under model (1) and 

the reduced ones in (4) under model (3). We define four spaces associated with the null and 

alternative hypotheses of (2) and (4) as follows:

It can be shown that they satisfy the following relationship:

Due to potential information loss during dimension reduction, both SHW − SH0 and SH1 − 

SH1W may not be the empty set, but we need to choose W such that SH1 − SH1W ≈ ø. The 

next question is how to achieve this.

We consider a data transformation procedure. Let C1 be a (p−r) × p matrix such that

(6)

Let  be a p × p matrix and  be a p × 1 vector, where x̃i1 

and x̃i2 are, respectively, the r × 1 and (p − r) × 1 subvectors of xĩ. We define 

, or B = D−1B̃, where B̃
1 and B̃

2 are, respectively, the first r rows and the 

last p − r rows of B̃. Therefore, model (3) can be rewritten as

(7)

In (7), due to (6), we only need to consider the transformed covariate vector x̃i1, which 

contains useful information associated with B1̃ − B0 = CB − B0.

We define a generalized heritability ratio based on model (7). Specifically, for each i, we 

define a new signal-to-noise ratio as the ratio of mean to standard deviation of signal wT (B̃
1 
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− B0)T x̃i1 + wT ei, denoted by SNRi,C = wT (B̃
1 − B0)T x̃i1/(wTΣRw)0.5. The generalized 

heritability ratio is then defined as

(8)

where . If the xis are random, then we have

(9)

where ΣC = (B̃
1 − B0)T (D−TΣXD−1)(r,r)(B̃

1 − B0), and (D−TΣXD−1)(r,r) is the upper r × r 

submatrix of D−TΣXD−1. Particularly, if C = [Ir 0], then ΣC reduces to wT (B̃
1 − B0)T 

(ΣX)(1,1)(B̃
1 − B0)w, in which (ΣX)(1,1) is the upper r × r submatrix of ΣX. Thus, GHR(w; C) 

can be interpreted as the ratio of the variance of wT (B̃
1 − B0)T x̃i1 relative to that of wT ei. 

We propose to calculate an optimal w* as follows:

(10)

We expect that such an optimal w* can substantially reduce the size of both SH1 − SH1W and 

SHW − SH0 and thus the use of such an optimal w* can enhance the power of testing the 

hypotheses in (2). Without loss of generality, we assume B0 = 0 from now on.

We consider a simple example to illustrate the appealing properties of GHR(w; C).

Example We consider model (1) with p = q = 5 and want to test the nonzero effect of the 

first covariate on all five responses. In this case, r = 1, C = (1, 0, 0, 0, 0), B0 = (0, 0, 0, 0, 0), 

and D = I5, which is a 5 × 5 identity matrix. Without loss of generality, it is assumed that 

(ΣX)(1,1) = 1.

We consider three different cases of ΣR and B. In the first case, we set 

 and the first column of B to be (1, 0, 0, 0, 0). It follows from (8) that

where c0 is any nonzero scalar. Therefore, w* picks out the first response, which is the sole 

one that is associated with the first covariate.

In the second case, we set  with  and the first row of B 
to be (1, 1, 0, 0, 0). It follows from (8) that
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where c0 is any nonzero scalar. Therefore, w* picks out both the first and second response 

with larger weight on the second component. This is desirable since β11 and β21 are equal in 

terms of strength of effect and the noise level for the second response is smaller than that of 

the first one.

In the third case, we set the first row of B to be (1, 1, 0, 0, 0) and the first and second 

columns of ΣR are set as σ2(1, ρ, 0, 0, 0) and σ2(ρ, 1, 0, 0, 0), respectively. It follows from 

(8) that

where Q(w3,w4,w5) is a non-negative quadratic form of (w3,w4,w5). Thus, the optimal w* 

chooses the first two responses with equal weight, since they are correlated with each other 

with same variance and β11 = β21 = 1.

For high dimensional data, it is difficult to accurately estimate w*, since the sample 

covariance matrix estimator Σ̂
R can be either ill-conditioned or not invertible for large q > n. 

One possible solution is to focus only on a small number of important features for testing. 

However, a naive search for the best subset is NP-hard. We develop a penalized procedure 

to address these two problems, while obtaining a relatively accurate estimate of w. Let Σ̃
R 

and Σ̂C be, respectively, estimators of ΣR and ΣC. Here we use Σ̃
R to denote the covariance 

estimator other than sample covariance matrix Σ̂
R. To obtain ΣĈ, we need to plug B̂, an 

estimator of B, into ΣC. Without loss of generality, we consider the ordinary least squares 

estimate of B. By imposing a sparse structure on w1, we recast the optimization problem as

(11)

where ‖·‖1 is the L1 norm and t > 0.

2.2 Sparse Unit Rank Projection

When r = 1, we call the problem in (10) as the unit rank projection problem and its 

corresponding sparse version in (11) as the sparse unit rank projection (SURP) problem. 

Actually, many statistical problems, such as two-sample test and marginal effect test 

problems, can be formulated as the unit rank projection problem (Lopes et al., 2011). We 

consider two cases including ℓ = (CB)T = 0 and ℓ = (CB)T ≠ 0. When ℓ = (CB)T = 0, the 

solution set of (8) is trivial, since any w ≠ 0 is a solution of (8). As discussed later, this 

property is extremely important for controlling the type I error rate.

When ℓ = (CB)T ≠ 0, (8) reduces to the following optimization problem:

(12)
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where ℓ is the sole eigenvector of ΣC, since ΣC is a unit-rank matrix. To impose an L1 

sparsity on w, we propose to solve the penalized version of (12) given by

(13)

Although (13) can be solved by using some standard convex programming methods, such 

methods are too slow for most large-scale applications, such as imaging genetics. We 

therefore reformulate our problem below. Without special saying, we focus on ℓ = (CB)T ≠ 

0.

By omitting a scaling factor , which will not affect the generalized heritability 

ratio, we note that (12) is equivalent to the following

(14)

We consider a penalized version of (14) as

(15)

A nice property of (15) is that it does not explicitly involve the inequality constraint, which 

leads to a fast computation. We define (14) as the oracle, since wλ converges to w0 as λ → 

0. It can be shown that

(16)

We obtain an equivalence between (15) and (13) as follows.

Theorem 2.1 Problem (15) is equivalent to problem (13) and wλ ∝ w0,λ.

We discuss some connections between our SURP problem and the optimization problem 

considered in Fan et al. (2012) for performing classification in high dimensional space.

However, rather than recasting the problem as in (12) and then (15), they formulate it as

which can further be reformulated as

(17)
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Since (17) involves a linear equality constraint, they replace it by a quadratic penalty as

(18)

This new formulation requires the simultaneously tuning of λ and γ, which can be 

computationally intensive. However, in Fan et al. (2012), they stated that the solution to (18) 

is not sensitive to γ, since solution is always in the direction of  when λ = 0, as 

validated by simulations. Their formulation (17) is close to the formulation (15). This result 

sheds some light on why wλ,γ is not sensitive to γ. Finally, we can show that the solution 

path to (15) has a piecewise linear property.

Proposition 2.2 Let ℓ ∈ ℝq be a constant vector and ΣR be positive definite. Then, w0,λ is a 

continuous piecewise linear function in λ.

We derive a coordinate descent algorithm to solve (15). Without loss of generality, suppose 

that , w̃j for all j ≥ 2 are given, and we need to optimize (15) 

with respect to w̃1. In this case, the objective function (15) becomes

where  and σ11, Σ12, and Σ22 are subcomponents of ΣR. Then, by taking the sub-

gradient with respect to w̃1, we have

where Γ1 = sign(w̃1) for w̃1 ≠ 0 and is between −1 and 1 if w̃1 = 0. Let Sλ(t) = sign(t)(|t|−λ)+ 

be the soft-thresholding operator. By setting , we have w̃1 = Sλ(ℓ̃
1 − 

Σ12w̃2)/σ11. Based on this result, we can obtain a coordinate descent algorithm as follows.

Algorithm 1

a. Initialize w at a starting point w(0) and set m = 0.

b. Repeat:

• (b.1) Increase m by 1: m ← m + 1

•
(b.2) for j ∈ 1, …, p, if , then set ; otherwise: 

c. Until numerical convergence: we require |f(w(m))−f(w(m−1))| to be sufficiently 

small.
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2.3 Extension to Multi-rank Cases

In this subsection, we extend the sparse unit rank projection procedure to handle multiple 

rank test problems when r > 1. We propose the k–th projection direction as the solution to 

the following problem:

(19)

It can be shown that (19) is equivalent to

(20)

Following the reasoning in Witten and Tibshirani (2011), we recast (20) into an equivalent 

problem.

Proposition 2.3 Problem (20) is equivalent to the following problem:

(21)

where  is the projection matrix onto the orthogonal space spanned by 

, in which Σ11 = (D−TΣX D−1)(r,r).

Based on Proposition 2.3, we consider several strategies of imposing the sparsity structure 

on wk. A simple strategy is to consider the following problem given by

(22)

where . When the rank of C is greater than 1, the problem in 

(22) is no longer convex, since it involves maximizing an objective function that is not 

concave. A potential solution is to use the minorization-maximization (MM) algorithm 

(Lange et al., 2000). Specifically, for any fixed w(m), we take a Taylor series expansion of 

 at w(m) and get

(23)

Thus, the right hand side of (23) minorizes the objective function (22) at  and is a 

convex function, which can be solved by using some convex optimization methods. 

However, based on our extensive experience, the MM algorithm is too slow for most large-

scale problems, such as imaging genetics.

To further improve computational efficiency, we consider a surrogate of (22). Recall the 

discussion in the second principle, we are only interested in extracting informative directions 
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for testing hypotheses of interest. We consider a spectral decomposition of (D−TΣXD−1)(r×r) 

as , where (γj, ℓj) are eigenvalue-eigenvector pairs with γ1 

≥ γ2 ≥ … ≥ γr. Then, instead of solving (22), we propose to solve r SURP problems as

(24)

Solving (24) leads to r sparse projection directions. In (24), since we sequentially extract the 

direction vector according to the input signal ΣC, it may produce a less informative direction 

vector compared with those from (22). However, such formulation leads to a fast 

computational algorithm and our simulation results demonstrate its reasonable performance. 

Thus, (24) is preferred in practice.

2.4 Test Procedure

We consider three statistics for testing H0W against H1W in (4). Based on model (3), we 

calculate the ordinary least squares estimate of βw, given by 

.

Subsequently, we calculate a k × k matrix, denoted by Tn, as follows:

(25)

where ΣΩ̃ is a consistent estimate of the covariance matrix of Cβ̂
w − b0. Specifically, let β̃

w 

be the restricted least squares (RLS) estimate of β under H0, which is given by

Then, we can set , where 

 and . When k > 1, we use the determinant, 

trace and eigenvalues of Tn as test statistics, which are given by

(26)

where det, trace, and eig, respectively, denote the determinant, trace and eigenvalues of a 

symmetric matrix. When k = 1, all three statistics in (26) reduce to the Wald-type (or 

Hotelling’s T2) test statistic. For simplicity, we focus on Trn throughout the paper.

We propose a wild bootstrap method to improve the finite sample performance of the test 

statistic Trn. First, we fit model (1) under the null hypothesis (2) to calculate the estimated 

regression coefficient matrix, denoted by B̂
0, with corresponding residuals 

for i = 1, …, n. Then we generate G bootstrap samples  for i = 1, …, n, 

where  are independently and identically distributed as a distribution F, which is chosen 
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to be ±1 with equal probability. For each generated wild-bootstrap sample, we repeat the 

estimation procedure for estimating the optimal weights and the calculation of the test 

statistic . Subsequently, the p-value of Trn is computed as , 

where 1(·) is an indicator function.

2.5 Tuning Parameter Selection

We consider several methods to select the tuning parameter λ. The first one is cross 

validation (CV), which is primarily a way of measuring the predictive performance of a 

statistical model. However, the CV technique can be computationally expensive for large-

scale problems. The second one is the information criterion, which has been widely to 

measure the relative goodness of fit of a statistical model. However, neither of these two 

methods are applicable for SURP, since our primary interest is to find informative directions 

for appropriately testing the null and alternative hypotheses of (2). If the null hypothesis is 

true, it is expected that CB̂ only contains noisy components and the estimated direction 

vectors should be random. In this case, the test statistics Trn, Wn, and Royn should not be 

sensitive to the value of λ. This motivates us to use the rejection rate to select the tuning 

parameter as follows:

(27)

where λmax is the largest λ to make w nonzero.

3 Asymptotic Theory

We investigate several theoretical properties of SURP and its associated estimator. By 

substituting Σ̃
R and ℓ̂ = CB̂ into (15), we can calculate an estimate of w0 as

(28)

The following question arises naturally:

how close is ŵλ to w0?

We address this question in Theorems 3.1 and 3.2.

We consider the scenario that there are a few nonzero components in w0, that is, a few 

response variables are associated with the covariates of interest. Such a scenario is common 

in many large-scale problems. We make a note here that the sparsity of  does not 

require neither  to be sparse, and hence are more quite flexible. Let S0 = {j : w0,j ≠ 

0} be the active set of w0 = (w0,1, …, w0,q)T and s0 is the number of elements in S0. We use 

the banded covariance estimator of ΣR (Bickel and Levina, 2008) such that 

 for some well behaved covariance class (ε0, α, C1), which 

is defined as
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We have the following results.

Theorem 3.1 Assume that ΣR ∈ (ε0, α, C1) and

(29)

where , and 

, in which γ(ε0, δ) and δ = δ(ε0) only depends on (ε0. Then, 

with probability at least 1 − (q ∨ n)−η1 − (q ∨ n)−η2, we have

(30)

where C is a constant not depending on q and n. Furthermore, for ‖ℓ‖2 > δ0, we have

(31)

Theorem 3.1 gives an oracle inequality and the L2 convergence rate of ŵλ in the sparse case, 

which indicates direction consistency and is important to ensure the good performance of 

test statistics. This result has several important implications. If , then 

‖ŵλ − w0‖2 converges to zero in probability. Therefore, our SURP should perform well for 

the extremely sparse cases with s0 << n. This is extremely important in practice, since the 

extremely sparse cases are common for many large-scale problems. Although we consider 

the banded covariance estimator of ΣR in Theorem 3.1 (Bickel and Levina, 2008), the 

convergence rate of ŵλ can be established for other estimators of ΣR and ℓ as follows.

Theorem 3.2 Suppose that we have ‖ΣR̃ − ΣR‖2 = Op(an) = op(1) and ‖ℓ̂ − ℓ‖∞ = Op(bn) = 

op(1), then

(32)

Furthermore, for ‖ℓ‖2 > δ0, we have

(33)
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Theorem 3.2 gives the L2 convergence rate of ŵλ for any possible estimators of ΣR and ℓ. A 

direct implication is that we can consider other estimators of ΣR in order to achieve better 

estimation of ΣR under different assumptions of ΣR. For instance, if ΣR has an approximate 

factor structure with sparsity, then we may consider the principal orthogonal complement 

thresholding (POET) method in Fan et al. (2013) to estimate ΣR. Moreover, if we can 

achieve good estimation of ℓ for large p, then we can extend model (1) to the scenario with 

large p. We will systematically investigate these generalizations in our future work.

Remark The SPReM estimator ŵλ is closely connected with those estimators in Witten and 

Tibshirani (2011) and Fan et al. (2012) in the framework of penalized linear discriminant 

analysis. However, little is known about the theoretical properties of such estimators. To the 

best of our knowledge, Theorems 3.1 and 3.2 are the first results on the convergence rate of 

such estimators under the restricted eigen-vectors of problem (11).

Remark The SPReM estimator ŵλ does not have the oracle property due to the asymptotic 

bias introduced by the L1 penalty. See detailed discussions in (Fan and Li, 2001; Zou, 2006). 

However, our estimation procedure may be modified to achieve the oracle property by using 

some non-concave penalties or adaptive weights. We will investigate this issue in more 

depth in our future work.

4 Numerical Examples

4.1 Simulation 1: Two Sample Test in High Dimensions

In this subsection, we consider high-dimensional two-sample test problems and compare 

SPReM with the High-dimensional Two-Sample test (HTS) method in Chen and Qin (2010) 

and the Random Projection (RP) method proposed by Lopes et al. (2011). Both HTS and RP 

are the state-of-the-art methods for detecting a shift between the means of two high-

dimensional normal distributions. It has been shown in Lopes et al. (2011) that the random 

projection method outperforms several competing methods when q/n converges to a constant 

or ∞.

We simulated two sets of samples {y1, …, yn1} and {yn1+1, …, yn} from N(β1, ΣR) and 

N(β2, ΣR), respectively, where β1 and β2 are q × 1 mean vectors and ΣR = σ2(ρjj′ ), in which 

(ρjj′) is a q × q correlation matrix. We set n = 2n1 = 100 and the dimension of the 

multivariate response q is 50, 100, 200, 400, and 800, respectively. We are interested in 

testing the null hypothesis H0 : β1 = β2 against H1 : β1 ≠ β2. This two-sample test problem 

can be formulated as a special case of model (1) with n = n1 + n2. Moreover, we have BT = 

[β1, β2] and C = (1, −1). Without loss of generality, we set β1 = β2 = 0 to assess type I error 

rate and then introduce a shift in the first ten components of β2 to be 1 to assess power. We 

set σ2 to be 1 and 3 and consider three different correlation matrices as follows.

• Case 1 is an independent covariance matrix with (ρjj′) = diag(1, …, 1).

• Case 2 is a weak correlation matrix with ρjj′ = 1(j′ = j) + 0.3 + 1(j′ ≠ j).

• Case 3 is a strong correlation covariance matrix with ρjj′ = 0.8|j′−j|.
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Simulation results are summarized in Tables 1 and 2. As expected, both HTS and RP 

perform worse as q gets larger, whereas our SPReM works very well even for relatively 

large q. This is consistent with our theoretical results in Theorems 3.1 and 3.2. Moreover, 

HTS and RP cannot control the type I error rate well in all scenarios, whereas our SPReM 

based on the wild bootstrap method works reasonably well. According to the best of our 

knowledge, none of the existing methods for the two sample test in high dimensions work 

well in this sparse setting. For cases (ii) and (iii),  is not sparse, but SPReM 

performs reasonably well under the correlated scenarios. This may indicate the potential of 

extending SPReM and its associated theory to non-sparse cases. As expected, increasing σ2 

decreases statistical power in rejecting the null hypothesis. Since both SPReM and RP 

significantly outperform HTS, we increased q to 2,000 and presented some additional 

comparisons between SPReM and RP based on 100 simulated data sets in Figure 1.

4.2 Simulation 2: Multiple Rank Cases

In this subsection, we evaluate the finite sample performance of SMURP. The simulation 

studies were designed to establish the association between a relatively high-dimensional 

imaging phenotype with a genetic marker (e.g., SNP or haplotype), which is common in 

imaging genetics studies, while adjusting for age and other environmental factors. We set 

the sample size n = 100 and the dimension of the multivariate phenotype q to be 50, 100, 

200, 400 and 800, respectively, and then simulated the multivariate phenotype according to 

model (1). The random errors were simulated from a multivariate normal distribution with 

mean 0 and covariance matrix with diagonal elements 1. For the off-diagonal elements in the 

covariance matrix, which characterize the correlations among the multivariate phenotypes, 

we categorized each component of the multivariate phenotype into three categories: high 

correlation, medium correlation and very low correlation with the corresponding number of 

components (1, 1, q − 2) in each category, and then we set the three degrees of correlation 

among the different components of the multivariate phenotype according to Table 3. The 

final covariance matrix is set to be ΣR = σ2(ρjj′), where (ρjj′) is the correlation matrix. We 

considered σ2 = 1 and 3.

For the covariates, we included two SNPs with an additive effect and 3 additional 

continuous covariates. We varied the minor allele frequency (MAF) of the first SNP, 

whereas we fixed the MAF of the second SNP to be 0.5. For the first SNP, we considered 6 

scenarios assuming the MAFs are 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. We 

simulated the three additional continuous covariates from a multivariate normal distribution 

with mean 0, standard deviation 1, and equal correlation 0.3. We first set B = 0 to assess 

type I error rate. To assess power, we set the first response to be the only components of the 

multivariate phenotype associated with the first SNP and the second response to be the 

component related to the second SNP effect. Specifically, we set the coefficients of the two 

SNPs to be 1 for the selected responses and all other regression coefficients to be 0. We are 

interested in testing the joint effects of the two SNPs on phenotypic variance.

We applied SPReM to 100 simulated data sets. Note that to the best of our knowledge, no 

other methods can be used to test the multi-rank test problem and thus we only focus on 

SPReM here. Table 4 presents the estimated rejection rates corresponding to different 
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MAFs, q, and σ2. Our SPReM works very well even for relatively large q under both σ2 = 1 

and 3. Specifically, the wild bootstrap method can control the type I error rate well in all 

scenarios. For the power, SPReM performs reasonably well under the small MAFs and q = 

800. It may indicate that our method can perform well for much larger q if the sample size 

gets larger. As expected, increasing σ2 decreases statistical power in rejecting the null 

hypothesis.

4.3 Alzheimer’s Disease Neuroimaging Initiative (ADNI) Data Analysis

The development of SPReM is motivated by the joint analysis of imaging, genetic, and 

clinical variables in the ADNI study. “Data used in the preparation of this article were 

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging 

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food 

and Drug Administration (FDA), private pharmaceutical companies and non-profit 

organizations, as a $60 million, 5-year publicprivate partnership. The primary goal of ADNI 

has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers 

of very early AD progression is intended to aid researchers and clinicians to develop new 

treatments and monitor their effectiveness, as well as lessen the time and cost of clinical 

trials. The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical 

Center and University of California, San Francisco. ADNI is the result of efforts of many 

coinvestigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date 

information, see www.adni-info.org.”

The Huamn 610-Quad BeadChip (Illumina, Inc. San Diego, CA) was used to genotype 818 

subjects in the ADNI-1 database, which resulted in a set of 620,901 SNPs and copy number 

variation (CNV) markers. Since the Apolipoprotein E (ApoE) SNPs, rs429358 and rs7412, 

are not on the Human 610-Quad Bead-Chip, they were genotyped separately and added to 

the data set manually. For simplicity, we only considered the 10, 479 SNPs collected on the 

chromosome 19, which houses the famous ApoE gene commonly suspected of having 

association with Alzheimer’s disease. A complete GWAS of ADNI will be reported 

elsewhere. The SNP data were preprocessed by standard quality control steps including 

dropping any SNP that has more than 5% missing data, imputing the missing values in each 

SNP with its mode, dropping SNPs with minor allele frequency < 0.05, and screening out 

SNPs violating the Hardy-Weinberg equilibrium. Finally, we obtained 8, 983 SNPs on 

chromosome 19, including the ApoE allele as the last SNP in our dataset.
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Our problem of interest is to perform a genome-wide search for establishing the association 

between the 10, 479 SNPs collected on the chromosome 19 and the brain volume of 93 

regions of interest (ROIs). We fitted model (1) with all 93 ROIs as responses and a covariate 

vector including an intercept, a specific SNP, age, gender, whole brain volume, and the top 5 

principal components to account for population stratification. To reduce population 

stratification effects, we only used 761 Caucasians from all 818 subjects. Subjects with 

missing values were removed, which leads to 747 subjects. We set λ = λmax in our SPReM 

for computational efficiency. To test the SNP effect on all 93 ROIs, we calculated the test 

statistic and its p–value for each SNP. We further performed a standard massive univariate 

analysis. Specifically, we fitted a linear model with the same set of covariates and calculated 

a p–value for every pair of ROIs and SNPs.

We developed a computationally efficient strategy to approximate the p–value of each SNP 

with different MAFs. In the real data analysis, we considered a pool of SNPs consisting of 6 

MAF groups including MAF∈ (0.05, 0.075], MAF∈ (0.075, 0.15], MAF∈ (0.15, 0.25], 

MAF∈ (0.25, 0.35], MAF∈ (0.35, 0.45], and MAF∈ (0.45, 0.50]. Each MAF group contains 

40 SNPs. For each SNP, we generated 10,000 wild bootstrap samples under the null 

hypothesis to obtain 10,000 bootstrapped test statistics. Then, based on 40 × 10, 000 

bootstrapped samples for each MAF group, we use the Satterthwaite method to approximate 

the null distribution of the test statistic by a Gamma distribution with parameters (aT, bT). 

Specifically, we set aT = ε2/ν and bT = ν/ε by matching the mean (ε) and the variance (ν) of 

the test statistics and those of the Gamma distribution. The histograms and the fitted gamma 

distributions along with the QQ-plots are, respectively, presented in Figures 2–3. Figures 2 

and 3 reveal that our gamma approximations work reasonably well for a wide range of 

MAFs when λ = λmax. Since we only use Gamma(aT, bT ) to approximate the p–value of 

large test statistic, we only need a good approximation at the tail of the Gamma distribution. 

See Figure 3 for details. For each SNP, we matched its MAF with the closest MAF group in 

the pool and then calculated the p–value of the test statistic based on the approximated 

gamma distribution. We present the manhattan plot in Figure 4 and the top 10 SNPs with 

their p–values for SPReM and the mass univariate analysis in Table 5 for λ = λmax.

We have several important findings. The ApoE allele was identified as the top one 

significant covariate with −log10(p) ~ 15 and 9 respectively, indicating a strong association 

between the ApoE allele and imaging phenotype, a biomarker of Alzheimer’s disease 

diagnosis. This finding agrees with the previous result in Vounou et al. (2012). We also 

found some interesting results regarding rs207650 on the TOMM40 gene, which is one of 

the top 10 significant SNPs with −log10(p) ~ 5 and 4 respectively. The TOMM40 gene is 

located in close proximity to the ApoE gene and has also been linked to AD in some recent 

studies (Vounou et al., 2012). We are also able to detect some additional SNPs, such as 

rs11667587 on the NOVA2 gene, among others, on the chromosome 19, which are not 

identified in existing genome-wide association studies. The new findings may shed more 

light on further Alzheimer’s research. The p–values for those top 10 SNPs calculated from 

SPReM are much smaller than those calculated from the mass univariate analysis. In other 

words, to achieve comparable p–values, the mass univariate analysis requires many more 

samples. This strongly demonstrates the effectiveness of our proposed method.
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5 Discussion

In this paper, we have developed a general SPReM framework based on the two heritability 

ratios. Our SPReM methodology has a wide range of applications, including sparse linear 

discriminant analysis, two sample tests, and general hypothesis tests in MLMs, among many 

others. We have systematically investigated the L2 convergence rate of ŵλ in the ultrahigh 

dimensional framework. We further extend the SURP problem to the SMURP and offered a 

sequential SURP approximation algorithm. We carried out simulation studies and examined 

a real data set to demonstrate the excellent performance of our SPReM framework compared 

to other state-of-the-art methods.

6 Assumptions and Proofs

Throughout the paper, the following assumptions are needed to facilitate the technical 

details, although they may not be the weakest conditions.

Assumption A1. C(n−1XTX)−1CT ≍ 1, that is, there exists constant c0 and C0 such that 

c0 ≤ C(n−1XTX)−1CT ≤ C0.

Assumption A2. 0 ≤ ε0 ≤ λmin(ΣR) ≤ λmax(ΣR) ≤ 1/ε0.

Assumption A3. The covariance estimator Σ̃
R satisfies: ‖Σ̃R − ΣR‖2 = Op(an) ≤ op(1).

Remark : Assumption A1 is a very weak and standard assumption for regression models. 

Assumption A2 has been widely used in the literature. Assumption A3 requires a relatively 

accurate covariance estimator in terms of spectral norm convergence. We may use some 

good penalized estimators of ΣR under different assumptions of ΣR (Bickel and Levina, 

2008; Cai et al., 2010; Lam and Fan, 2009; Rothman et al., 2009; Fan et al., 2013).

Proof of Theorem 2.1 The Karush-Kuhn-Tucker (KKT) conditions for problem (13) are 

given by:

where Γ is a q × 1 vector and equals the subgradient of ‖w‖1 with respect to w. We consider 

two scenarios. First, suppose that |ℓj| > λ for some j. We must have γΣRw ≠ 0, which leads to 

γ > 0 and wTΣRw = 1. Thus, the KKT conditions reduce to

If we write w̃ = γw, this is equivalent to solving problem (15) with w̃ and then take 

normalization. Second, if |ℓj| ≤ λ for any j, then w = 0 and γ = 0, which is the solution of (15) 

as well. This finishes the proof.

Proof of Proposition 2.2 It follows from Theorem 2 of Rosset and Zhu (2007).
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Proof of Proposition 2.3 The proof is similar to that of Proposition 1 of Witten and 

Tibshirani (2011). Letting , then problem (20) can be rewritten as

which is equivalent to

(34)

where . Thus, w̃k and uk that solve problem (34) are the k-th left and right 

singular vectors of A (Witten and Tibshirani, 2011). Therefore, we have 

 and uk is the k-th eigenvector of ATA, or equivalently the k-th right 

singular vector of A. For problem (34), w̃k is the k-th left singular vector of A. Therefore, 

the solution of (21) is the k-th discriminant vector of (20).

Proof of Theorem 3.1 In this theorem, we specifically use the banded covariance estimator 

Σ̃
R = Bkn(ΣR̃), where Bk(Σ) = [σjj′I(|j′ −j| ≤ k)] and Σ̂

R is the sample covariance matrix of yi − 

B̂T xi.

First, we define  = {‖ΣR̃ − Bkn(ΣR)‖∞ ≤ t1} ∩ {‖ℓ̂ − ℓ‖∞ ≤ t2}, where t1 and t2 are 

specified as in Lemma 6.2. Then, it follows from Lemma 6.2 that P( ) ≥ 1−3(q ∨ n)−η1 − 

2(q ∨ n)−η2.

On the set , by taking  and using Lemma 6.1, we have

Let w0,S0 = [w0,jI(j ∈ S0)], where w0,j is the j–th component of w0. The above equation can 

be rewritten as
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which yields

Finally, we obtain the following inequality

which finishes the proof.

Proof of Theorem 3.2 It follows from Lemma (6.1) that

Note that . Then, by taking

we have

Sun et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



By using Weyl’s inequality, we have

where ‖ΣR̃ − ΣR‖2 = Op(an) = op(1). Finally, we have

(35)

which finishes the proof.

Lemma 6.1 We have the following basic inequality

(36)

Proof We rewrite the optimization problem (28) as

Thus, we have

which yields

in which we have used ℓ̂ = ΣRw0 + ℓ̂ − ℓ in the last equality.

Lemma 6.2 For all  and , we have
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(37)

Proof First, it follows from Lemma A.3 of Bickel and Levina (2008) that

where .

Second, we know that  is Sub(1)-distributed, where . 

Then by the union sum inequality, we have

(38)

By taking , we can rewrite the above inequality as

Finally, we get

which finishes the proof.
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Fig. 1. 
Simulation 1 results: the estimated rejection rates as functions of q for two different σ2 

values. The upper and lower rows are, respectively, for powers and for type I error rates, 

whereas the left and right columns correspond to σ2 = 1 and σ2 = 3, respectively. In all 

panels, the lines obtained from SPReM and RP are, respectively, presented in red and in 

blue, and the results for independence, weak, and strong correlation structures are, 

respectively, presented as thick, dashed, and dotted lines.
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Fig. 2. 
Histograms and their gamma approximations based on the wild bootstrap samples under the 

null hypothesis for different MAFs for λ = λmax.
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Fig. 3. 
QQ-plot of the gamma approximations based on the wild bootstrap samples under the null 

hypothesis for different MAFs for λ = λmax.
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Fig. 4. 
ADNI GWAS results: Manhattan plot of −log10(p)-values on chromosome 19 by SPReM for 

λ = λmax.
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Table 3

Correlation matrix of responses used in the simulation

High Med Low

High 0.9 0.6 0.3

Med 0.6 0.9 0.1

Low 0.3 0.1 0.1
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